Home
Current Issue
All Issues
Journal Information
About this Journal
Editorial Board
Instructions for Authors
Publishing ethics
Article
|
, 2018 Vol. 51, Issue. 3
Harmony search algorithm and its application to optimization problems in civil and water resources engineering
Joong Hoon Kima,*   

aSchool of Civil, Environmental and Architectural Engineering, Korea University

2018.. 281:291
 
 
+ Preview
+ References
+ Information
Harmony search algorithm (HSA), developed by Hydrosystem lab. in Korea University in 2001, was a new meta-heuristic optimization algorithm inspired by the iterative improvision process of Jazz music players where the best harmony is eventually produced. HSA is now one of the most well-known meta-heuristic algorithms (as proven by its cited number of the first published paper more than 3,600 times as of January 11th 2018 based on Google Scholar citation) and has been applied to diverse research domains such as not only water resources and civil engineering but also in medical science, business, and humanities. This paper is a review article written with the wish for wider application of HSA and other optimization algorithms, especially in the domain of water resources engineering. Therefore, this paper first briefly introduces the mechanism and operators of HSA and then reviews its application area and citation frequency per research domain. In addition, recent globalization of HSA will be investigated and summarized by checking the current status of related international conferences and on-going research projects. After reviewing previous domestic papers with optimization algorithms specifically published in the water resources domain, this paper is finalized by delivering some suggestions to encourage the application of optimization algorithms including HSA.

1. 

2. Baek, C. W., Jun, H. D., and Kim, J. H. (2010). “Development of a PDA model for water distribution systems using harmony search algorithm.” Ksce Journal of Civil Engineering, Vol. 14, No. 4, pp. 613-625.  

3. Bekdas, G., and Nigdeli, S. M. (2011). “Estimating optimum parameters of tuned mass dampers using harmony search.” Engineering Structure, Vol. 33, No. 9, pp. 2716-2723.  

4. 

5. Cheng, Y. M., Li, D. Z., Li, L., Sun, Y. J., Baker, R., and Yang, Y. (2011a). “Limit equilibrium method based on an approximate lower bound method with a variable factor of safety that can consider residual strength.” Computers and Geotechnics, Vol. 38, No. 5, pp. 623-637.  

6. Cheng, Y. M., Li, L., and Chi, S. C. (2007). “Performance studies on six heuristic global optimization methods in the location of critical slip surface.” Computers and Geotechnics, Vol. 34, No. 6, pp. 462-484.  

7. Cheng, Y. M., Li, L., and Fang, S.S. (2011b). “Improved harmony search methods to replace variational principle in geotechnical problems.” Journal of mechanics, Vol. 27, No. 1, pp. 107-119.  

8. Cheng, Y. M., Li, L., Lansivaara, T., Chi, S. C., and Sun, Y. J. (2008). “An improved harmony search minimization algorithm using different slip surface generation methods for slope stability analysis.” Engineering Optimization, Vol. 40, No. 2, pp. 95-115.  

9. 

10. Choi, Y. H., Jung, D., Lee, H. M., Yoo, D. G., and Kim, J. H. (2017). “Improving the quality of pareto optimal solutions in water distribution network design.” Journal of Water Resources Planning and Management, Vol. 143, No. 8, pp. 04017036.  

11. Choi, Y. H., Lee, H. M., Yoo, D. G., and Kim, J. H. (2015). “Optimal design of water supply system using multi-objective harmony search algorithm.” Journal of Korean Society of Water and Wastewater, Vol. 29, No. 3, pp. 293-303.  

12. Chung, G. H., Park, H. S., Sung, J. Y., and Kim, H. J. (2012). “Determination and evaluation of optimal parameters in storage function method using SCE-UA.” Journal of Korea Water Resources Association, Vol. 45, No. 11, pp. 1169-1186.   

13. Degertekin, S. O. (2008). “Optimum design of steel frames using harmony search algorithm.” Structural and Multidisciplinary Optimization, Vol. 36, No. 4, pp. 393-401.  

14. Degertekin, S. O., and Hayalioglu, M. S. (2010). “Harmony search algorithm for minimum cost design of steel frames with semi- rigid connections and column bases.” Structural and Multi-disciplinary Optimization, Vol. 42, No. 5, pp. 755-768.  

15. Degertekin, S. O., Hayalioglu, M. S., and Gorgun, H. (2009). “Optimum design of geometrically non-linear steel frames with semi-rigid connections using a harmony search algorithm.” Steel and Composite Structures, Vol. 9, No. 6, pp. 535-555.  

16. Erdal, F., Doğan, E., and Saka, M. P. (2011). “Optimum design of cellular beams using harmony search and particle swarm optimizers.” Journal of Constructional Steel Research, Vol. 67, No. 2, pp. 237-247.  

17. Geem, Z. W. (2005). “Harmony search in water pump switching problem.” International Conference on Natural Computation, Vol. 3612, pp. 751-760.  

18. Geem, Z. W. (2006). “Optimal cost design of water distribution networks using harmony search.” Engineering Optimization, Vol. 38, No. 3, pp. 259-277.  

19. Geem, Z. W. (2009). “Harmony search optimisation to the pump included water distribution network design.” Civil Engineering and Environmental Systems, Vol. 26, No. 3, pp. 211-221.  

20. Geem, Z. W. (2010). “Parameter estimation of the nonlinear Muskingum model using parameter-setting-free harmony search.” Journal of Hydrologic Engineering, Vol. 16, No. 8, pp. 684-688.  

21. Geem, Z. W. (2011). “Solution quality improvement in chiller loading optimization.” Applied Thermal Engineering, Vol. 31, No. 10, pp. 1848-1851.  

22. Geem, Z. W., and Cho Y. (2011). “Optimal design of water distribution networks using parameter-setting-free harmony search for two major parameters.” Journal of Water Resources Planning and Management, Vol. 137, No. 4, pp. 377-380.  

23. Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001). “A new heuristic optimization algorithm: harmony search.” Simulation, Vol. 76, No. 2, pp. 60-68.  

24. Geem, Z. W., and Shim, K. B. (2010). “Parameter-setting-free harmony search algorithm.” Applied Mathematics and Computation, Vol. 217, No. 8, pp. 3881-3889.  

25. Gholizadeh, R., Amiri, G. G., and Mohebi, B. (2010). “An alternative approach to a harmony search algorithm for a construction site layout problem.” Canadian Journal of Civil Engineering, Vol. 37, No. 12, pp. 1560-1571.  

26. Glover, F. (1977). “Heuristics for integer programming using surrogate constraints.” Decision Sciences, Vol. 8, No. 1, pp. 156-166.  

27. 

28. 

29. Jung, D., Choi, J., Choi, Y. H., and Kim, J. H. (2016). “A new paralleli-zation scheme for harmony search algorithm.” Harmony Search Algorithm, Advances in Intelligent Systems and Computing, Vol. 382, pp. 147-152.  

30. 

31. Jung, D., Kang, D., and Kim, J. H. (2017). “Development of a hybrid harmony search for water distribution system design.” KSCE Journal of Civil Engineering, pp. 1-9.  

32. Jung, J.H., Han, G.Y., and Kim, G.S. (2008). “Optimization of detention facilities by using multi-objective Genetic Algorithms.” Journal of Korea Water Resources Association, Vol. 41, No. 12, pp. 1211-1218.  

33. Kaveh, A., and Abadi, A. S. M. (2010). “Cost optimization of a composite floor system using an improved harmony search algorithm.” Journal of Constructional Steel Research, Vol. 66, No. 5, pp. 664-669.  

34. Kaveh, A., and Abadi, A. S. M. (2011). “Cost optimization of reinforced concrete one-way ribbed slabs using harmony search algorithm.” Arabian Journal for Science and Engineering, Vol. 36, No. 7, pp. 1179-1187.  

35. Kim, J. H., Geem, Z. W., and Kim, E. S. (2001). “Parameter estimation of the nonlinear Muskingum model using harmony search.” Journal of the American Water Resources Association, Vol. 37, No. 5, pp. 1131-1138.  

36. Kim, K. W., Lee, Y. J., Kang, D. S., and Kim, Y. H. (2013). “Improved approach for optimal design of agricultural irrigation system.” Korean Society of Hazard Mitigation, Vol. 13, No. 6, pp. 359-365.   

37. Kim, T. S., Jung, I. W., Koo, B. Y., and Bae, D. H. (2007). “Optimization of tank model parameters Using multi-objective Genetic Algorithm (I): methodology and model mormulation.” Journal of Korea Water Resources Association, Vol. 40, No. 9, pp. 677-685.  

38. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by simulated annealing.” Science, Vol. 220, No. 4598, pp. 671-680.  

39. Koo, B. Y., Kim, T. S., Jung, I. W., and Bae, D. H. (2007). “Optimization of tank model parameters Using multi-objective Genetic Algorithm (II): application of preference ordering, Journal of Korea Water Resources Association, Vol. 40, No. 9, pp. 686-694.  

40. Lee, D. H. (2006). “Automatic calibration of SWAT model using LH- OAT sensitivity analysis and SCE-UA optimization method.” Journal of Korea Water Resources Association, Vol. 39, No. 8, pp. 677-690  

41. Lee, H. M., Yoo, D. G., Lee, E. H., Choi, Y. H., and Kim, J. H. (2016a). “Development and applications of multi-layered Harmony Search Algorithm for improving optimization efficiency.” Journal of Korea Academia-Industrial Cooperation Society, Vol. 17, No. 4, pp. 1-12.  

42. Lee, H. M., Yoo, D. G., Sadollah, A., and Kim, J. H. (2016b). “Optimal cost design of water distribution networks using a decomposition approach.” Engineering Optimization, Vol. 48, No. 12, pp. 2141-2156.  

43. Lee, J. H., Kim, J. H., and Jun, H. D. (2011). “An optimal sewer layout model to reduce urban inundation .” Journal of Korea Water Resources Association, Vol. 44, No. 10, pp. 777-786.  

44. Lee, S., Yoo, D. G., Jung, D., and Kim, J. H. (2015). “Optimal life cycle design of water pipe system using Genetic Algorithm.” Journal of the Korea Academia-Industrial Cooperation Society, Vol. 16, No. 6, pp. 4216-4227.  

45. Luo, Q., Wu, J., Sun, X., Yang, Y., and Wu, J. (2012). “Optimal design of groundwater remediation systems using a multi- objective fast harmony search algorithm.” Hydrogeology Journal, pp. 1-14.  

46. Mahdavi, M., Fesanghary, M., and Damangir, E. (2007). “An improved harmony search algorithm for solving optimization problems.” Applied Mathematics and Computation, Vol. 188, No. 2, pp. 1567-1579.  

47. Miandoabchi, E., Farahani, R. Z., and Szeto, W. Y. (2012). “Bi- objective bimodal urban road network design using hybrid metaheuristics.” Central European Journal of Operations Research, Vol. 20, No. 4, pp. 583-621.  

48. 

49. Ostfeld, A., Salomons, E., Ormsbee, L., Uber, J. G., Bros, C. M., Kalungi, P., Burd, R., Zazula-Coetzee, B., Belrain, T., Kang, D., Lansey, K., Shen, H., McBean, E., Wu, Z. Y., Walski, T., Alvisi, S., Franchini, M., Johnson, J. P., Ghimire, S. R., Barkdoll, B. D., Koppel, T., Vassiljev, A., Kim, J. H., Chung, G., Yoo, D. G., Diao, K., Zhou, Y., Li, J., Liu, Z., Chang, K., Gao, J., Qu, S., Yuan, Y., Laucelli, T. D. P., Lyroudia, L. S. V., Kapelan, Z., Savic, D., Berardi, L., Barbaro, G., Giustolisi, O., Asadzadeh, M., Tolson, B. A., and McKillop, R. (2011). “Battle of the water calibration networks.” Journal of Water Resources Planning and Management, Vol. 138, No. 5, pp. 523-532.  

50. Paik, K., Kim, J. H., Kim, H. S., and Lee, D. R. (2005). “A conceptual rainfall-runoff model considering seasonal variation.” Hydro-logical Processes, Vol. 19, No. 19, pp. 3837-3850.  

51. Park, D. H., Kang, D. S., Ahn, J. H., and Kim, T. W. (2016). “Redetermination of curve number using genetic algorithm and CN aligner equation.” Journal of Korea Water Resources Association. Vol. 49, No. 5, pp. 373-380.   

52. Piperagkas, G. S., Konstantaras, I., Skouri, K., and Parsopoulos, K. E. (2012). “Solving the stochastic dynamic lot-sizing problem through nature-inspired heuristics.” Computers & Operations Research, Vol. 39, No. 7, pp. 1555-1565.  

53. Ryu, S. H., and Lee, J. H. (2012). “Determination of optimal locations and size of storage in the urban sub-surface using Genetic Algorithm.” Korean Society of Hazard Mitigation. Vol. 12, No. 3, pp. 285-290.  

54. Sadollah, A., Choi, Y., Yoo, D. G., and Kim, J. H. (2015). “Metaheu-ristic algorithms for approximate solution to ordinary differential equations of longitudinal fins having various profiles.” Applied Soft Computing, Vol. 33, pp. 360-379.  

55. Saka, M. P. (2007). “Optimum geometry design of geodesic domes using harmony search algorithm.” Advances in Structural Engineering, Vol. 10, No. 6, pp. 595-606.  

56. Saka, M. P. (2009). “Optimum design of steel sway frames to BS5950 using harmony search algorithm.” Journal of Constructional Steel Research, Vol. 65, No. 1, pp. 36-43.  

57. Saka, M. P., and Erdal, F. (2009). “Harmony search based algorithm for the optimum design of grillage systems to LRFD-AISC.” Structural and Multidisciplinary Optimization, Vol. 38, No. 1, pp.25-41.  

58. Salcedo-Sanz, S., Manjarres, D., Pastor-Sánchez, Á., Del Ser, J., Portilla-Figueras, J.A., and Gil-Lopez, S. (2013). “One-way urban traffic reconfiguration using a multi-objective harmony search approach.” Expert Systems with Applications, Vol. 40, No. 9, pp. 3341-3350.  

59. Shim, S. K., Koo, B. Y., and Ahn, T. J. (2009). “Development of combination runoff model applied by Genetic Algorithm.” Journal of Korea Water Resources Association, Vol. 42, No. 3, pp. 201-212.  

60. Shivaie, M., Kazemi, M. G., and Ameli, M. T. (2015). “A modified harmony search algorithm for solving load-frequency control of non-linear interconnected hydrothermal power systems.” Sustainable Energy Technologies and Assessments, Vol. 10, pp. 53-62.  

61. 

62. Yazdi, J., Choi, Y. H., and Kim, J. H. (2017). “Non-dominated sorting Harmony Search Differential Evolution (NS-HS-DE): a hybrid algorithm for multi-objective design of water distribution networks.” Water, Vol. 9, No. 8, p. 587.  

Journal Title : J. Korea Water Resour. Assoc.
Volume : 51
No : 3
Page : pp 281~291
Received Date : 12.23.2017
Revised Date : 01.16.2018
Accepted Date : 01.16.2018
Doi : https://doi.org/10.3741/JKWRA.2018.51.3.281
 
 
online submission
Most Viewed
1.A study on the application of modified hydraulic conductivity to consider turbid water for open-cut riverbed infiltration process: numerical modeling approach
2.Flood risk estimation with scenario-based, coupled river-overland hydrodynamic modeling
3.Assessment of actual evapotranspiration using modified satellite-based priestley-taylor algorithm using MODIS products
4.Analysis and evaluation of hydrological components in a water curtain cultivation site
5.A development of hierarchical bayesian model for changing point analysis at watershed scale
         
  302-237 Hyoryeong-ro, Seocho-gu, Seoul 137-871, Korea
Tel: +82-2-561-2732  Fax: +82-2-561-2733  E-mail: master@kwra.or.kr
Copyright© 2003-2016 KWRA. All Rights Reserved.